
A Neural Model of the Cortical 
Representation of Egocentric 
Distance 

Neurons in the visual cortex of monkeys respond se- 
lectively to the disparity between the images in the two 
eyes. Recent recordings have shown that some of the 
disparity-selective neurons in the primary visual cortex 
and the posterior parietal cortex are modulated by the 
distance of fixation. A population of such gain-modu- 
lated, disparity-selective neurons forms a set of basis 
functions of horizontal disparity and distance of fixation 
that can be used as an intermediate representation for 
computing egocentric distance. This distributed repre- 
sentation is consistent with psychophysical studies of 
human depth perception; in contrast, neurons explicitly 
tuned to distance are not consistent with how we per- 
ceive distance. In a population model that includes noise 
in  the firing rates of neurons, the perceived distance is 
shown to be the estimate of geometrical distance that 
minimizes the variance of the estimation. 
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There are many visual cues to estimate the depth of 
an object, including stereopsis, motion parallax, shape 
from shading, and occlusion. These are relative depth 
cues and do not provide sufficient information to re- 
cover the position of an object with respect to the 
viewer (egocentric distance). For stereops& the depth 
of an object is measured relative to the fixation point 
of the two eyes, as illustrated in Figure 1 .  Because 
each eye sees an object from slightly different angles, 
the images are slightly displaced. The horizontaldis- 
placement, or horizontal disparity, is proportional to 
the distance between the object and the fixation point: 
zero disparity corresponds to an object at fixation, 
whereas positive and negative disparities correspond, 
respectively, to locations in front of or behind the 
fixation point (Fig. 1).  

If the distance to the fixation point, also called the 
viewing distance, can be recovered, then the position 
of an object in egocentric coordinates can be esti- 
mated by combining this information with horizontal 
disparity. Psychophysical experiments indicate that at 
least two cues are used by the visual system to recover 
the viewing distance: the vergence angle and vertical 
disparities (von Hofsten, 1976, 1977; Ritter, 1977; 
Cumming et al., 1991; Rogers and Bradshaw, 1993). 
For simplicity, we consider only vergence in this re- 
port, but our approach can be easily extended to in- 
clude vertical disparity. For an object directly in front 
of the viewer, the distance,-B, as a function of dis- 
parity, 6, vergence, v ,  and interocular distance, I, is 
given by 

A three-dimensional plot of this function, with respect 
to v and 6, is shown in Figure 8A. Although psycho- 
physical experiments have demonstrated that humans 
can estimate absolute distance, this problem has only 
recently been studied with physiological methods 
(Gnadt and Mays, 1991; Trotter et al., 1991, 1992). 

The pioneering work on the cat visual cortex (Ni- 
kara et al., 1968; Pettigrew et al., 1968) and later stud- 
ies in a variety of species revealed that a large per- 
centage of cells in the primary visual cortex and 
extrastriate areas are selective to horizontal disparity 
(Hubel and Wiesel, 1970; Poggio and Fischer, 1977; 
Ferster, 1981; Maunsell and van Essen, 1983; Poggio, 
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v = Vergence angle 
6 = Object disparity X : Fixation point 
8 = Object angle 0: Object 

Figure 1. Viewing geometiy for stereopsis. The horizontal disparity, 6, of a stimulus 
is equal to the difference between the vergence angle, v,  and the object angle 0 
(sametimes called the absolute disparity of the object). The disparity 6 depends on 
the position of the object with respect m the fixation pint, which is shown in three 
positions: beyond fixation (A) ,  at fixation (B), and in front of fixation (C). The egocentric 
distance of an object can be determined by combining a disparity measurement with 
vergence angle or any cue related to distance of fixation. 

1984; Poggio et al., 1985,1988; LeVay and Voigt, 1988). 
Poggio classified disparity-selective neurons into three 
groups, the near, tuned, and far cells. Tuned cells 
were characterized by narrow tuning with a peak close 
to zero disparitywhereas near and far neurons showed 
broad tuning with peak responses at large values of 
disparity, positive for near cells and negative for far 
cells. LeVay and Voigt (1988) and Lehky and Sejnow- 
ski (1990) suggested these classes were only the ex- 
tremes in a continuum of selectivities, and recent 
psychophysical studies provide confirming evidence 
(Stevenson et al., 1992; Cormack et al., 1993). Figure 
2 shows the full spectrum of disparity-tuned re- 
sponses that are typically found in the visual cortex. 

In the above studies, the disparity selectivity of 
neurons was tested at a fixed distance, which con- 
founded disparity and distance. The influence of these 
two variables can be distinguished by measuring the 
disparity selectivity of cells over a range of fixation 
distances. Figure 3 illustrates the two types of ideal- 
ized responses that one might expect to find in such 
an experiment. One possibility is that the disparity 
tuning curve would be invariant under changes in 
distance of fixation: this would imply that the peak 
of the distance tuning curve should vary with the 
distance of fixation (Fig. 3A). The opposite extreme 
would be a cell that was tuned to distance, but with 
a disparity tuning that varied with distance to fixation 
(Fig. 38).  

Disparity (deg) 

Figure 2, Idealized disparity tuning curves of conical neurons. Each curve corresponds 
to the response of a single cell to disparity (see Eqs. 3-5). The curves illustrated 
here were sampled from a continuum of tuning curves. The widths of the tuning curves 
increase as the best disparities at the response peaks increase. 

This experiment has been performed by Trotter et 
al. (1991, 1992) in V1, and Gnadt and Mays (1991) 
in the parietal cortex. They recorded the disparity 
tuning curves of cortical neurons for various viewing 
distances and found selectivities intermediate be- 
tween these two extremes. The magnitudes of the 
responses to disparity were modulated by the distance 
to fixation but the shape and position of the peaks of 
the tuning curves were unchanged. Figure 4 shows 
four examples of these neurons (Trotter et al., 1992). 
Since the position of the peak of the disparity selec- 
tivity is invariant with changes in viewing distance, 
these neurons were not tuned to distance, but neither 
were they unambiguously tuned to disparity. This type 
of response was not unexpected since a previous neu- 
ral network model trained to compute distance from 
pairs of vergence angles and disparity-tuned units ex- 
hibited such "gain" fields for distance (Lehky et al., 
1990). However, this network model only provided 
limited insight into the nature of the representation 
used by the brain (see Discussion). The goal of this 
report is formally to characterhe the representation 
found in the brain (Gnadt and Mays, 1991; Trotter et 
al., 1992) and in neural network models (Lehky et al., 
1990) and to explore the computational advantages 
of this representation. 

Our analysis relies on the theory of basis functions. 
This theory takes its root in 19th centurymathematics, 
but it has only recently been applied to neural net- 
works (Casdagli, 1989; Moody and Darken, 1989; Pog- 
gio, 1990). Specifically, we show that the gain-mod- 
ulated neurons reported in the visual cortex form a 
set of basis functions for the representation of dis- 
tance as well as other functions of disparity and ver- 
gence that are needed for guiding actions. The way 
humans perceive distance is consistent with this rep- 
resentation and corresponds to a low variance esti- 
mate of distance. Although gain-modulated neurons 
may indeed be involved in an intermediate represen- 
tation of distance, our theoretical analysis shows that 
they may also be used to represent other fynctions of 
disparity and eye position. 
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A- Disparity Detector 

B- Distance Detector 

-4 0 
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Figure 3. Responses of idealized disparity and distance tuning curves. 4 Response of a pure disparity detector as a function of disparity (left\ and as a function of distance 
(right), fw 10 fixation distances (dashed lines). The response of a disparity detector to horimntal disparity w u l d  be unaffected by changes in fixation distance. 8. Response of a 
pure distance detector is shown as a funciion of disparity (leh) and as a function of distance (right], for 10 fixation distances (dashed line~j.The response of a distance detector 
should only depend on egocentric distance. 

Representing Egocentric Distance with 
t Basis Functions 

Basts Functions 
A basic problem in the theory of function approxi- 
mation is to approximate any function in a class of 
functions by a linear combination of fixed basis func- 
tions. For example, any well-behaved function can be 
approximated arbitrarily closely by a linear combi- 
nation of sines and cosines summed over all possible 
frequencies and phases. The Fourier series is only 
one of many possible basis sets. 

Sigmoid functions, commonly used in neural net- 
works, and many radially symmetric functions can also 
be used as a basis set and have various advantages 
(Homiket al., 1989; Moody and Darken, 1989; Poggio, 
1990). The familiar gaussian function is radially sym- 

metric and a family of gaussians with all possible cen- 
ters and variances forms a basis set. ~igmoid functions 
with all possible discriminant surfaces in the input 
space also form a basis set, but one that breaks up the 
input space into extended regions rather than the 
compact regions of support formed by gaussian basis 
functions. 

There is a close connection between approxima- 
tion theoryand neural networks (~apedes and Farber, 
1988; Poggio, 1990). In a three-layer feedforward neu- 
ral network, the hidden layer of processing units rep- 
resents input patterns by a population code that serves 
as an intermediate transformation between the inputs 
and outputs. There are many possible choices of out- 
put functions for the hidden units, depending on the 
nature of the transformation the network needs to 
perform and the number of hidden units available. 
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Figure 4. Experimental recordings showing that h disparity selectivity of V1 neurons is modulated by distance of fixation. Each mw of panels is horn one neuron and each 
panel gives the tuning m e  for disparity at a different viewing distance. In all wses, only the amplitude of the respanse varies with fixation distance while the general shape of 
the disparity tuning curve and the position of respanse peak remain the same. These neum are neither pure disparity nor pwe distance detectors (see Fg. 3). Response to visual 
stimuli is shown by the solid lines and spomanews activity by the bmken lines. Adapted from Tmtter et al. (1992). 

One way to determine an appropriate set of hidden 
units is to use an optimization procedure such as 
backpropagation (Rumelhart et al., 1986). An alter- 
native is to handcraft a good set of hidden units, such 
as a set of basis functions. Choosing the hidden units 
in advance greatly simplifies optimization since the 
input weights are fixed and only the weights from the 
hidden to the output units need to be determined. 

Whether the brain makes use of basis functions is 
not yet clear from physiological data, but the problem 
of spatial localization may be one area where it can 
be tested (Poggio, 1990). We show in this section that 
the observed cortical representation of distance can 
be considered a new type of basis function that com- 
bines some of the best features of radial basis func- 
tions and sigmoids. Each basis function corresponds 
to the response of one gain-modulated neuron of the 

type reported by Trotter et al. (1992) and Gnadt and 
Mays (1991). Figure 5 shows a neural network dia- 
gram of our model. 

Methocis 
Our goal is to show that gain-modulated neurons can 
be used to approximate distance. We first specify a 
set of basis functions, B,(6, v), of disparity, 6, and 
vergence, v, that are consistent with the observed re- 
sponses of gain-modulated neurons in the visual cor- 
tex. The next step is to show that a linear combination 
of these basis functions can be used to estimate the 
distance, D(6, v): 
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Figure 5. Neural network representation of a basis function model for computing 
egocentric distance from vergence and disparity. Each hidden unit receives as inputs 
the vergence angle, v, and the disparity. 6, and computes a function of these two 
variables. The basis functions BA6, v )  on the hidden layer represent the gainmodulated 
neurons found in  Vl .  In  a backpropagation network, the hidden unit is usually a sigmoid 
function of a weighted sum of the inputs. The hidden units project to the output layer. 
which consists of a single unit that represents distance by its continuous output, D. 

where the w, are the weights of the network depicted 
in Figure 5. 

Gain-modulated Units 
We specified 41 tuning curves for disparity shown in 
Figure 2 (only every other curve is shown). These 
profiles were idealizations of real disparity tuning 
curves from monkeys and cats and were similar to the 
ones previously used by Lehky and Sejnowski (1990): 
near units (units with preferred disparity, 6,, less than 
-I0): 

far units (units with preferred disparity, 6,, greater 
than lo): 

excitatory tuned units (units with preferred disparity, 
6,, within [-lo, 17): 

where 6, is the peak of response for a given curve, and 
a: is related to the width of the tuning curve. The 
response peaks were evenly spread over the disparity 
range [-4", 4"jnd the u: were chosen to equal the 
absolute value of the disparity corresponding to the 
peak response, except for the curves whose peak were 
within the disparity range [-lo', 10'1, for which the 
variance was set to 10 min of arc. We did not include 
tuned inhibitory cells since they could be modeled 
by tuned excitatory cells with negative output weights. 

Disparity tuning curves were not available for neu- 
rons in humans, so these values were chosen to reflect 
data from psychophysical studies and recordings from 
other species. In cats, LeVay and Voigt recorded neu- 
rons that had peaks of disparity tuning that were dis- 

tributed within this interval (LeVay and Voigt, 1988). 
Most recordings from monkeys have been from neu- 
rons in the foveal representation of primary visual 
cortex, [-lo, 17. Humans are above chance in per- 
ceiving disparity in the range [-4O, 47 (Westheimer 
and Tanzman, 1956; Richards, 1971), which suggests 
that the range of disparities over which cells respond 
in humans must extend well beyond [-lo, 1") In any 
case, the results presented in this report do not de- 
pend critically upon this range. 

Vergence tuning curves were modeled as sigmoids 
and 10 different curves were chosen. The gain mod- 
ulation of cortical neurons has not yet been fully char- 
acterized, but the sigmoid shape of the input-output 
function of most neurons is at least consistent with 
our choice. The expression used for the vergence 
selectivity, z,(v), was 

where v is the vergence angle, and v, and T, are, re- 
spectively, the thresholds and the slopes, or "tem- 
peratures," of the sigmoids. The threshold controls 
the position of the sigmoid on the vergence axis, 
whereas the temperature controls the steepness of the 
sigmoid. We used 10 combinations of five thresholds 
(7.78", 11.26', 14.76', 18.24", 21.73") and two temper- 
atures (3.45 and 1.15), which correspond to shallow 
modulation of the disparity responses with viewing 
distance. 

Some of the gain modulation of neurons reported 
by Trotter et al. were nonmonotonic and would be 
better fit by a gaussian (see the second cell in Fig. 
4). Using gaussian modulation in addition to sigmoid 
modulation would not affect the results presented in 
this report and for simplicity we only used sigmoids. 
We did not include monotonically decreasing sig- 
moids for they are equivalent to increasing ones mul- 
tiplied by a negative weight. 

Finally, by multiplying combinations of disparity 
and vergence selectivities, we obtained 10 x 41 gain- 
modulated responses, that is;a total of 410 basis func- 
tions: 

Figure 6 ,  A-C, shows three typical examples of these 
functions, plotting the responses as functions of ver- 
gence and disparity. These plots are idealizations of 
the neuronal responses shown in Figure 4. Each basis 
function models the response of a single cell to dis- 
parity and vergence. 

Distance-tuned Units 
For some of our simulations, we used a second set of 
functions tuned to distance rather than disparity in 
order to compare their properties with those of the 
above basis functions. The responses of these units 
were gaussian functions of distance similar to the ones 
shown in Figure 3B: 
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Figure 6. Typical tuning curves for the hidden units as functions of vergence and disparity. A-C, Three examples of idealized gainmodulated units. The tuning with disparity is 
a difference of gaussians and the vergence tuning is sigmoidal (see Eqs. 6. 7). 0, A distance-tuned unit. lsodistance lines run along the diagonal in the vergencedisparity plane 
(see Eq. 8). 

where D(6, v) is the function given in Equation 1, and 
D, is the preferred distance for basis function i. The 
u were set to 0.07 in all Bf(6, v). 

A graph showing the response for one of these 
units is shown in Figure 6D. There were 410 distance- 
tuned units and the peaks of their responses were 
evenly distributed from 0.16 to 1.08 meters. 

Output Representations: Geometrical versus 
Perceived Distance 
Two different functions of distance were used for the 
output, one in which the output was proportional to 
geometric distance (Eq. I), and a second function in 
which the output was proportional to perceived dis- 
tance. 

The need for this second function was motivated 
by experiments showing that the quantitative percept 
of depth is not a linear function of the stimulus dis- 
parity, as one might have expected (Richards, 1971; 

Richards and Kaye, 1974). The linear relationship be- 
tween perceived and geometrical disparity holds only 
in the range of [-40', 40'1, outside of which the es- 
timated disparity tends to decrease as the stimulus 
disparity increases (Fig. 7A).  Consequently, humans 
cannot possibly perceive the actual distance of an 
object for all possible pairs of vergence and disparity. 
The perceived distance function can be obtained by 
replacing the disparity, 6, with the perceived disparity, 
6,,,, in Equation 1. The perceived disparity was ob- 
tained by parameterizing the psychometric curves 
(Richards, 1971) (Fig. 7A,B): 

6 i f6 '>6  
6' otherwise 

Figures 8A and 9A show, respectively, geometrical 
distance and perceived distance as a function of dis- 
parity and vergence. 
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Stimulus disparity (deg) 
Figure 7. Perceived disparity as a function of geometric disparity of the stimulus. A, Experimental data from Richards (1971). Perception is accurate (stmilht line) only within 
[-40'. 40'1. 6. Parameteriied curve in Equation 9. The dashed line shows the wrve geometrical disparity. The wrve we used is the mirror image of the one obtained by Richards 
because he used negative values far uncrossed disparities and pasitii  values for crossed disparities. 

The optimal set of weights were determined for 
all four combinations of the two input representations 
and the two output functions. The delta rule (Widrow 
and Hoff, 1960), an iterative optimization technique, 
was used to find the optimal set of weights for the 
network shown in Figure 5 (see Appendix). Because 
the second layer of the network is effectively a linear 
transformation, the delta rule b not subject to local 
minima and the weights are guaranteed to converge 
to the optimal network (Widrow and Stearns, 1985). 

Results 

Geometrical Distance 
We first determined the set of weights that provided 
the best approximation to geometrical distance as a 
function of vergence and disparity using gain-mod- 
ulated units as a basis set. In Figure 8, A and B show 
the actual function and the approximated function. 
The approximation had only 0.63% error, demonstrat- 
ing that gain-modulated neurons form a set of basis 
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A Geometrical distance A Perceived distance 

B Gain modulated B Gain modulated 

c Distance tuned c Distance tuned 

Figure 8. Network approximations of geometric distance as a function of vergence 
and dispariv. A Gmwk disance. B. Approximation by a set of gaimrodUIsted 

Figure (I. N m r k  approximations to p m i v e d  d i n a m  as a function of vergelre 

units. C. Approximation by a set of distance-tuned units. and dispariry. 4 Perceived distance. 8, Approximation by a newrk of gainmodulated 
units. C, Approximation by a new of distamtuned units. 
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Figure 10. Estimation of the perceived (A]  arid geametric (6) disparities irom a 
distributed representation of disparity. The solid lines are the means of the estimations 
and the doned lines are one standard deviation away. Note different scales on the 
~ n ,  graphs: the standard deviation when estimating geometrical disparity is 20 times 
greater than the standard deviation for estimating perceived disparity. 

functions that :an be used for accurately approxi- 
mating geometric distance. 

We then repeated the procedure with the set of 
functions made of distance-tuned units. As shown in 
Figure 8C, the best approximation had an overall error 
of only 0.76%, so distance-tuned units were as good 
for estimating distance as the basis functions. 

Perceived Distance 
Distance-tuned units have not been reported in the 
visual cortex even though they are adequate for rep- 
resenting distance and are conceptually simpler than 
a distributed representation. It is possible that such 
neurons do exist, but have not yet been found; alter- 
natively, they may not be necessary or might even be 
a di~adva~itage. We provide a computational expla- 
nation for their absence. 

It has been implicitly assumed that humans ac- 
curately perceive geometrical distance when only dis- 
parity and vergence are available as cues. In fact, hu- 
mans tend to overestimate close viewing distances 
and underestimate far distances and the ratios are a 
function of the experimental paradigm (Foley and 
Held, 1972; Foley, 1980). This would not affect our 
previous results since both sets of functions can ap- 
proximate this new distance function by simply mul- 
tiplying the distance function by a constant (the gain). 

A more serious problem arises from n~nlinearitie~ 
in the psychometric curve of perceived disparity as a 
function of geometric disparity (Richards, 1971) (Fig. 
7A). The perception of disparity appears to be ac- 
curate within the range of [-40', 40'1 but reverses and 
returns to zero as the disparity increases. As a con- 
sequence, a stimulus with 4" of disparity is perceived 
at nearly the plane of fixation. As explained in Meth- 
ods above, we derived the function giving the per- 
ceived distance as a function of disparity andvergence 
by replacing disparity in Equation 1 by perceived dis- 
parity (Fig. 9A). Using the same optimization tech- 
nique as before, we found the best possible approx- 
imation of perceived distance for the disparity-tuned 
base units and the distance-tuned units. 

Although the gain-modulated basis functions 
achieved 0.47% error (Fig. 9B), it was not possible 
to get a reasonable approximation of perceived dis- 
tance when using the distance-tuned units (23.43% 
error) (Fig. 9C). This was because the distance-tuned 
units (Fig. 6 D )  were all oriented along the diagonals 
in the (v, 6) plane, so they could only approximate 
functions whose gradients were perpendicular to this 
diagonal. In particular, they cannot be used to ap- 
proximate perceived distance, which does not have 
this property. So even if distance-tuned units were 
present in the cortex, they could not be used for es- 
timating perceived distance for some ranges of pa- 
rameters. 

If gain-modulated neurons could be used to ap- 
proximate geometrical distance as well as perceived 
distance, and such neurons have been found in the 
cortex, then why does the brain not compute the ac- 
tual geometrical distance? An answer to this question, 
given below, depends on noise. Cortical neurons fire 
action potentials with a Poisson distribution and the 
variance in the spike rate in response to a stimulus is 
proportional to the mean value of the response (Tol- 
hurst et al., 1982; Vogels et al., 1989). If distance is 
estimated by pooling the responses of a neuronal pop- 
ulation, then it is important to characterize the vari- 
ance of the estimation, that is, the reliability of the 
estimated distance. We show in the next section that 
the variance depends on whether geometrical or per- 
ceived distance is being estimated from the response 
of the gain-modulated neurons. 

Reliability of Distance Estimation 

Bias-Variance Trarle-on 
In estimating the value of a quantity by averaging 
measurements from noisy data, there is a trade-off 
between the bias of the estimate-the difference be- 
tween the mean of the estimator and the true value 
of the quantity-and the variance of the estimate. Es- 
timators with smaller bias have a higher variance and 
low variance estimators have greater bias. A compro- 
mise is choosing an estimator between minimizing 
the bias and reducing the variance (Scott, 1992). 

Estimating distance from the responses of noisy 
neurons is subject to this bias-variance trade-off. The 
bias corresponds to the difference between the esti- 
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mated and the "true" geometrical distance. Recovery 
of the true geometrical distance without bias leads to 
a high variance. We show here that the perceived 
distance, a highly biased estimate of geometrical dis- 
tance especially for large positive and negative dis- 
parities, produces a smaller average variance. 

Because disparity is the only important variable for 
the bias-variance trade-off, the analysis described in 
this section is limited to disparity estimation. The 
reasons for whichvergence is excluded from the anal- 
ysis are discussed in Results below. 

Metbocls 
We assume that there are pools of noisy neurons whose 
disparity selectivities are of the type shown in Figure 
2. The goal is to use the information in this neural 
population to estimate the disparity. 

Noise Model 
The variance of an estimator depends on the type of 
noise present in the data. Single-cell recordings from 
the cortex of cats and monkeys (Tolhurst et al., 1982; 
Vogels et al., 1989) suggest that the variance, a2, of 
the firing rate of a typical neuron is 

where Kand bare constants and a is the mean activity 
(firing rate or total number of spikes) of a neuron for 
a given stimulus. Measurements of Kvary from 1 to 3 
and b is usually close to 1. We used K = 2 and b = 1 
for most of our analysis, which are the average values 
for these parameters reported in awake animals (Vo- 
gels et al., 1989). Our results were not sensitive to 
the exact values of these constants. It is essential for 
our analysis only that a2 be proportional to the activity. 

For a pool of neurons, i, with the same disparity 
tuning and independent noise for each neuron, the 
variance of the average firing rate in the pool, a;, is 
inversely proportional to the number of cells, N,, in 
the pool: 

Note that a: is a function of horizontal disparity, 6, 
because the activities of the neurons in the pool, a,, 
are functions of disparity. We assume that the number 
of cells with a given selectivity for horizontal disparity 
is a gaussian function of the peak of the tuning curve, 
centered at zero disparity (LeVay and Voigt, 1988): 

where N, is the number of cells in the pool with pre- 
ferred disparity 6,, No is the number of cells in the 
pool with a preferred disparity of zero, and aZ is the 
variance of the distribution. The influence of No and 
a2 on the results is discussed in the next section. 

It is important for our results that the disparity 
tuning curves shown in Figure 2 correspond to pools 
containing a variable number of neurons. In partic- 
ular, there were many fewer neurons tuned to large 
disparities than to small disparities. 

Our noise model does not capture all aspects of 
neuronal noise. It describes only how spike rates vary 
around their mean value while ignoring variations in 
interspike intervals. These variations would have been 
relevant if we had considered neural codes involving 
the temporal distribution of the spike train. Evidence 
for such code in the cortex exists (McClurkin et al., 
1991), but is still tentative. Consequently, we as- 
sumed that the idealized neurons in our model en- 
code information through their mean firing rates. 

Computing the Estimator and the Associated 
Variance 
Our goal was to find a way to combine the responses 
of disparity-selective neurons to recover either true 
disparity or perceived disparity. This was accom- 
plished by creating networks from weighted linear 
combination of the curves shown in Figure 2 that give 
a mean output either to the solid line shown in Figure 
7B, corresponding to perceived disparity, or to the 
broken line in Figure 7B, corresponding to geomet- 
rical disparity. The estimated disparity is 

where { w,} is the set of weights for a given estimator 
(geometrical or perceived), n is the number of dis- 
parity pools (41 in all cases), and a,@) is the response 
of the disparity selective pool i to the disparity 6. 

Instead of applying gradient descent, as before, to 
find the optimum set of weights in the network, a 
more e5cient technique based on matrix inversion 
was used (see Appendix) (Casdagli, 1989); this was 
feasible because the network had only 41 weights, 
compared to 410 weights in the previous network. If 
all the pools of neurons were independent, the vari- 
ance of the estimate is the weighted sum of variances: 

where a:, is the variance of tk-estimator for dispari- 
ty 6. 

Consequently, if a pool ,of neurons contributes 
strongly to the estimation of disparity, A(6) (i.e., its 
weight w, is high), it will also strongly influence the 
total variance, a;,. Notice, too, that a;, is a function 
of 6 since a: are functions of 6. 

Variance of Estimation for Geometrical and 
Perceived Disparity 
Figure 10 shows the standard deviation (square root 
of the variance) as a function of disparity for perceived 
(Fig. 10A) and geometrical (Fig. 10B) disparity for 
No = 1000 and a2 = 1.15. With these values for the 
distribution in Equation 5, there is only a single neu- 
ron in the pools tuned to i-4" and -4", compared to 
1000 neurons for the pool centered at 0". On average, 
the standard deviation is about 20 times smaller 
(20.97/0.92 = 22.74) when perceived disparity is be- 
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ing computed than for the geometrical disparity. For 
perceived disparity, the large bias for large disparities 
is compensated by a low standard deviation, partic- 
ularly in the central region, where the bias is also 
quite small. For geometric disparity, the bias of the 
estimation is zero but the standard error is high for 
all disparities. 

An explanation for why the variance increases as 
the bias goes down derives from the sizes of the pools 
and the weights in the network. For large disparities, 
for example 4", only five or six neuronal pools will be 
significantly active, the ones with peaks of disparity 
selectivity between 2" and 4". The weights on these 
pools must be quite large to compute the true dis- 
parity and they will therefore make a large contri- 
bution to the total variance. To reduce the total vari- 
ance, the weights from the noisiest pools must be 
reduced, and these are from the pools with the largest 
preferred disparities. The consequence is, however, 
a poor estimate for large values of disparity. 

The trade-off between bias and variance arises from 
noise that is not homogeneous over the representa- 
tion of disparity. More cells are tuned to zero disparity 
than to large values of disparity. We do not have 
enough data to decide whether vergence is similarly 
inhomogeneous, which is why we have restricted our 
analysis to disparity. If the noise is homogeneous over 
the whole vergence axis, then this would only scale 
the variance but would not change our conclusions. 
If more neurons were selective for some range of 
vergence, then an analysis similar to that of disparity 
would apply. For example, if grasping distances were 
overrepresented in the cortex, then estimates of dis- 
tance within this range could be optimized at the 
expense of accuracy for more distant locations. 

This result provides a tentative answer to the ques- 
tion of whywe perceive distance the way we do when 
it would be theoretically possible to recover geo- 
metric distance. Estimating geometric distance would 
lead to an extremely high variance over all disparities. 
Fortunately, many other cues can be used to assess 
the distance of objects when disparityvalues are large, 
so our visual system can afford to optimize distance 
estimation for small disparities. 

Sensitivity to Distt-ibution of Neuronsper 
Disparity Pool 
Changing the values of No and a2 affects the quanti- 
tative predictions but not the conclusions. Fitting a 
gaussian to the data in LeVay and Voigt (1988) for 
anesthetized cats leads to a value of a2 = 2.0. Record- 
ings from behaving monkeys rarely extend beyond 
the disparity range [-I? 1% but the value obtained 
for crZ in the cat probably provides an upper bound. 
For ait = 2.0, the ratio of the standard deviation of the 
geometric disparity over the standard deviation of the 
perceived disparity was around 15, and around 30 for 
(r2 = 0.6. There is aIso uncertainty about the sizes of 
the disparity pools. For No = 100, the ratio was 15. 
Over all feasible values of No, [50,10,000], and a2, [0.5, 
4.01, the ratios of the variances was at least 10. 

Discussion 
This study of how distance is coded in populations 
of cortical neurons has three conclusions. First, even 
though none of the gain-modulated units in the mod- 
el was explicitly tuned to distance, together they 
formed a distributed representation from which ego- 
centric distance could be estimated. This distributed 
representation can be described as a set of basis func- 
tions with the tuning curve of each neuron providing 
a single basis function. Second, a representation based 
on distance-tuned units is not consistent with the way 
humans perceive distance. It is therefore not surpris- 
ing that distance-tuned neurons have not been re- 
ported in the cortex. Finally, perceived disparity cor- 
responds to a low variance, though biased, estimate 
of disparity based on the known disparity-selective 
neurons observed in the visual cortex. This could 
account for the fact that we do not perceive geomet- 
rical distance even though, in principle, we should 
be able to compute it. 

Posterior Parietd Cortex 
Lesions in posterior parietal cortex lead to spatial def- 
icits that include problems with using depth cues 
(Holmes, 1918; Holmes and Horrax, 1919; Godwin- 
Austen, 1965). Single-unit studies in LIP and area 7a 
of the posterior parietal cortex have revealed a dis- 
tributed representation of egocentric space (see An- 
dersen, 1989, and Stein, 1992, for reviews). These 
studies have focused on horizontal and vertical eye 
position and have shown that retinotopic receptive 
fields are modulated by eye position. Recent results 
suggest that the parietal cortex might also encode 
distance in a similar way. Gnadt has shown that many 
neurons in LIP respond to accommodation, discon- 
jugate eye movements (Gnadt and Mays, 1991), and 
disparity. Among those neurons tuned to disparity, 
some are modulated by the distance to fixation in a 
manner similar to that found in area V1 (Gnadt and 
Mays, 1991). This finding is consistent with our model 
and strongly supports the hypothesis that the parietal 
cortex represents egocentric distance as part of a spa- 
tial representation. 

The distributed representation of depth in this study 
is similar to the way that position is represented in 
head-centered space along the vertical and horizontal 
axes (Zipser and Andersen, 1988). Tuning for dis- 
parity is eye-centered and the responses are modu- 
lated by eye position, though not by conjugate eye 
movements as in previous models but by vergence 
eye movements. Neurons with response fields fixed 
in egocentric space, responding to a fixed distance or 
a fixed location in head-centered space independent 
of eye position, have not been reported in LIP or area 
7a. 

Ear& Egocentric RepresenlWioiz 
Neurons in the foveal region of area V1 have small 
retinal receptive fields and are widely believed to en- 
code the positions of objects in eye-centered coor- 
dinates. Our model, however, along w i ~  the data 
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from Trotter et al., challenges this belief and suggests 
instead that neurons in V1 encode the egocentric dis- 
tance of objects with a distributed representation. The 
limited size of the receptive fields of V1 neurons might 
seem a serious problem, but a recent hierarchical 
model demonstrates that a "retino-spatiotopic" rep- 
resentation of spatial location is feasible (Pouget et 
al., 1993). By retino-spatiotopic we simply mean that 
cells encode the spatial location of an object falling 
on a limited region of the retina, just as many cells 
code orientation or color. 

Further evidence for retino-spatiotopic maps was 
found in area 17 in cats (Weyand and Malpeli, 1989) 
and area V3A in monkeys (Galleti and Battaglini, 
1989), where the visual response amplitudes of neu- 
rons are modulated by the vertical and horizontal eye 
position. This suggests that the egocentric position 
of an object is already encoded in the early visual 
cortex in a way similar to that found in the parietal 
cortex (Andersen et al., 1985; Zipser and Andersen, 
1988). Such egocentric representations would be use- 
ful reference frames for planning actions. 

Early spatial representations can be reconciled with 
physiological and psychophysical experiments claim- 
ing the contrary (Pouget et al., 1993). Lesion exper- 
iments in area V1 cannot be used as a guide since 
such lesions typically result in blindness, a nonspe- 
cific impairment that would certainly mask other more 
specific disorders. For example, specific deficits for 
orientation discrimination have been found following 
cortical damage in higher visual areas (Goodale and 
Milner, 1990) but not following lesions of V1, even 
though V1 represents orientation. 

Do Gain-modulated Neurons Form a Basis Set? 
A set of N vectors is called a basis for a vector space 
Vof dimension N if (1) any arbitrary vector in Vcan 
be expressed as a linear combination of the vectors 
in the set and (2) the vectors in the set are linearly 
independent. The vector space used for function ap- 
proximation has an infinite number of dimensions, so 
an infinite number of basis functions is required to 
span this space. Obviously, our basis set does not 
meet this requirement and therefore cannot be called 
a basis in the strict sense. 

The functions we used were formed from products 
of gaussian functions of disparity and sigmoid func- 
tions of vergence. A set of gaussians with all possible 
widths and peak positions is known to form a basis. 
This is also the case for a set of sigmoids including 
all possible gains (temperature parameters) and 
threshold positions. If two sets individually form bas- 
es, the set made by the product of all possible pairs 
of functions from these two sets is also a basis. Con- 
sequently, the set of functions used here, products of 
gaussians and sigmoids, is a subset from a larger set 
which does form a basis. 

In contrast, the set formed by all distance-tuned 
units does not form a basis. The response function of 
a distance-tuned unit is intrinsically a function of only 
one variable--distance. Consequently, this set cannot 

form a basis for all possible functions of vergence and 
disparity, which depend on two variables. This is the 
reason why it was not possible to find a set of weights 
to approximate perceived distance using distance- 
tuned units. 

Advantages of Basis Functions Representation 
over an Explicit RepresenWon 
Basis functions greatly simplify learning because only 
one layer of weights needs to be determined, those 
from the basis units to the output units (Moody and 
Darken, 1989; Poggio, 1990). However, a serious 
problem with using basis functions is that many are 
required to estimate an arbitrary function accurately. 
In our simulations we used 410 basis functions, which 
is a large but manageable number. This number could 
have been reduced using an appropriate optimization 
procedure, but in a nonsystematic attempt to do so 
we found that at least 100 basis functions were needed 
to get reasonably accurate estimates of perceived dis- 
tance. 

In the brain, each basis function can be identified 
with a single neuron or a group of related neurons. 
We have assumed that each basis function contributes 
independently to the approximation. However, re- 
cent measurements from pairs of nearby cortical neu- 
rons in the visual system have shown that the noise 
in their responses typically has a correlation of 0.15 
(Zohary et al., 1992; Gawne and Richmond, 1993). 
This correlation might seem low but in fact it severely 
limits the information that can be obtained by aver- 
aging over many neurons (Britten et aI., 1992). A thou- 
sand correlated neurons carry little more information 
than around 50 neurons. A quantitative application of 
our model to the cortex awaits measurements of the 
correlations in the relevant neural populations car- 
rying information about disparity and vergence. 

We have shown that distance can be recovered 
from the responses of gain-modulated neurons; the 
same basis functions can be used to approximate oth- 
er functions of vergence and-disparity-perceived 
distance is only one function. Take, for example, the 
visually guided control of anarm. The angles between 
the arm segments required to reach a particular object 
are a different function of the object disparity and 
viewing distance and could be approximated by the 
same set of gain-modulated neurons used for esti- 
mating distance. Gain-modulated neurons could be 
used for many different purposes through multiple 
projections to different areas. 

Even though we have shown that gain-modulated 
neurons in a distributed representation of disparity 
can represent egocentric distance, it would be mis- 
leading to call this a representation of egocentric dis- 
tance since other functions could be equally well 
approximated by the same neural population. The 
actual functions explicitly represented are deter- 
mined by the outputs of the neurons, or their projec- 
tive fields, in addition to their receptive fields (Lehky 
and Sejnowski, 1990). The same argument-applies as 
well to motor cortex, which could encode many func- 
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tions of reaching in addition to the direction of hand 
movement (Georgopoulos et al., 1986). In this view, 
the particular function attributed to the representa- 
tion depends as much on the task selected by the 
experimenter as by the intrinsic parameters coded by 
the cortex (Poggio, 1990; Sanger, 1994). 

Comparison to Backpropagation Networks 
In a previous study, we trained a feedforward neural 
network to estimate distance by backpropagation of 
errors using the same input coding schemes for dis- 
parity and vergence studied here (Lehky et al., 1990). 
The weights between the inputs and the hidden layer 
of units were optimized along with the weights from 
the hidden to the output layer of units. Thus, the 
hidden units were not prespecified, as in our basis 
function network, but were optimized for the desired 
goal. With this approach it was possible to produce 
networks with nearly perfect performance using a 
minimal number of hidden units. In the case of geo- 
metrical distance from disparity and vergence, only 
20 hidden units were required. 

There are three disadvantages with this earlier 
model of distance estimation. First, each hidden unit 
took on a combination of properties whose function 
was difficult to decipher. This is a consequence of the 
compactness of the transformation produced by back- 
propagation and the complete connectivity between 
layers of units. Second, the backpropagation network 
took longer to optimize because two layers of weights 
were being simultaneously determined. Third, the 
representation in the hidden layer was highly spe- 
cialized for the particular task the network was trained 
to perform and would not necessarily be useful for 
other purposes. If several functions of the same input 
units were required, it would be necessary to create 
a separate network for each function. 

There are several advantages to having compact, 
dedicated representations, but it is an open question 
whether the cortex uses them. We suspect that cortical 
learning mechanisms produce more versatile basis 
functions that span the dimensions of the space with- 
in which functions are synthesized for each cortical 
area: In summary, a representation using basis func- 
tions requires more hidden units than a backpropa- 
gation network for any single task, but is more ver- 
satile and easier to train. 

ExtraretZnaE versus Retinal Cues for 
Viewing Distance 
Vertical disparity could also be used to recover view- 
ing distance (Longuet-Higgins, 1982; Mayhew and 
Longuet-Higgins, 1982) and recent evidence from hu- 
mans shows conditions under which it can be used 
for absolute distance judgments and disparity scaling 
(Rogers and Bradshaw, 1993). However, vertical dis- 
parity is not used by the visual system for objects 
smaller than 20" of visual angle (Cumming et al., 1991; 
Rogers and Bradshaw, 1993), probably because the 
vertical disparity of smaller objects is too small for 
the visual system to detect. Subjects can, nonetheless, 
judge the distance or size of objects well below the 

20° required for the vertical disparity system. In other 
experiments, manipulation of the vergence angle 
shows that it can influence the assessment of viewing 
distance (von Hofsten 1976, 1979; Ritter, 1977; Cum- 
ming et al., 1991). Therefore, both vergence and ver- 
tical disparity can be used when they provide reliable 
information. 

This raises the issue of whether experimental ev- 
idence for vergence modulation could be attributed 
to vertical disparity instead (Gnadt and Mays, 1991; 
Trotter et al., 1991, 1992). The receptive fields of the 
neurons recorded by Trotter et al. were within the 
central 5" of the visual field (Y. Trotter, personal com- 
munication). Vertical disparity differences across small 
objects in this central region were, at most, 3'. It would 
seem highly unlikely that the gain modulation of the 
disparity-sensitive neurons observed by Trotter et al. 
could be fully accounted for by such small changes 
in vertical disparity. This remains, however, an em- 
pirical question whose resolution would require in- 
dependent manipulations of vertical disparity and 
vergence. 

Our model could be expanded to include vertical 
disparity in the input representation. In addition to 
vergence and disparity, we would expand the basis 
set to represent arbitrary functions of three variables. 
If the tuning of neurons in the visual cortex to vertical 
disparity were found to be a gaussian function or a 
sigmoid function, we would then be able to approx- 
imate any function of these three variables. The prob- 
lem with continuing to increase the number of input 
variables in this way is that the number of required 
basis functions increases exponentially with the num- 
ber of dimensions. 

Distance versus Scaling 
vergence provides information for solving a problem 
that is closely related to distance estimation. When a 
rigid object moves away from a viewer, its size is usu- 
ally perceived as constant even though its angular 
extent on the retina and th~r-elative disparities be- 
tween the parts of the object change with distance. 
The invariance of the perceived size of the object with 
viewing distance is called she  constancy. 

Several investigators have suggested that size con- 
stancy could be achieved by scaling the retinal size 
to compensate for viewing distance and have reported 
experimental results supporting this hypothesis 
(Cumming et al., 1991; Rogers and Bradshaw, 1993) 
(W. Richards, personal communication). The extent 
of an object in depth, S, as a function of the disparity 
of its front and back edges, respectively a,,, and a,,,, 
and vergence angle, v, is given by 

where I is the interocular distance. 
This equation is similar in form to Equation 1, 

which gives egocentric distance as a functlon of ver- 
gence and disparity. Thus, the neural mechanisms 
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underlying shape and size constancy may be similar 
to the ones described in this report. In particular, the 
modulation of disparity-selective neurons by ver- 
gence could be responsible for several perceptual 
constancies. 

Appendix 
We describe here two methods that were used to com- 
pute the optimal weights given a set of input units 
and the function to be approximated. 

E s t Z d n g  Dktance from Basis Functions 
Estimating geometrical or perceived distance with a 
linear combination of basis functions is equivalent to 
adjusting the hidden to output weights of a three- 
layer network whose hidden units correspond to the 
basis functions (Fig. 5). The delta rule provides a way 
of finding the optimum set of weights by iteratively 
presenting a set of examples of input-output pairs. 
The optimum weights are the ones that minimize the 
mean square error: 

where m is the number of examples; y,* is the value 
of the target for an input vergence and disparity pair, 
(6,, up), w, is the weight or coefficient associated with 
basis function 5, and B,(6,, up) is the value of the basis 
function i for example p. The corresponding values 
of the basis function, B,(6,, v,), were described in the 
first Methods section and the targets associated were 
either geometrical or perceived distance depending 
on the simulation. 

The delta rule changes the weights by a small 
amount in the direction opposite to the gradient of 
increasing error: 

a e 
Aw, = -a- 

d ~ , '  

where a is a parameter that controls the rate at which 
the weights change. The delta rule is guaranteed to 
converge to the minimum of the error after a sufficient 
number of presentations of the training set if a is 
sufficiently small (Widrow and Stearns, 1985). 

E s f t d n g  Geomelrlcal and Percdwd DisparLty 
In the presence of noise, it is more convenient to treat 
the output of the network and the activity of the neu- 
ronal pbols as random variables. Let Y* be a random 
variable corresponding to the target disparities (ei- 
ther perceived or geometrical). Let Z be a vector of 
random variables whose components are the activities 
of the neuronal pools. Z is the sum of two vectors, Z - A + N, where A is the vector of the mean activities 
for a given disparity and N is the noise vector. Our 
goal is to find the linear estimation of Y* from 
Z, WTZ, which minimizes the variance of the error 
(Y* - WTZ): 

The solution of this estimation problem is well 
known (Anderson and Moore, 1979) and has the form 

w *  = C-1 C zz ZY. r (19) 

where C,, and Cz, are, respectively, the covariance 
matrices of Z with itself and Z and Y*. Substituting 
Z =  A + N, we have 

C,, = E[(A + N)(A + NIT], (20) 

CAN = C,, = 0 because the noise around the mean is 
independent of the mean activity. At first, this state- 
ment may sound counterintuitive since the variance 
of the noise was chosen to be proportional to the 
mean activity (see Eq. 11). However, it can be easily 
shown that these two random variables are neverthe- 
less independent. Similarly, 

C,. = 0 because Nand Y* are independent random 
variables. Substituting Equations 22 and 23 in Equa- 
tion 19 leads to 

The entries of the covariance matrices can be ob- 
tained from, for C,, 

and for CAT, 

where a,(6,) is the activity of pool i for input p and 
y(6,) is the disparity, either perceived or geometrical, 
for input p. - - 

The covariance matrix of the noise, C,,, can be 
directly computed from the probability distribution 
of the noise. Nondiagonal terms are all zero since we 
assumed independence between neuronal pools. The 
diagonal terms are obtained from 

Although we do not know the noise distribution,p(n,), 
directly, we have assumed that, given a mean level of 
activityof the pool, the noise has a normal distribution 
with a variance proportional to the mean (Eq. 11). 
Consequently, we need to introduce conditional dis- 
tribution in Equation 27. In general, for any random 
variables, X and Y; we can write 

or equivalently, when Yis a discrete random variable, 
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where p(x) andp(y) are the probability density func- 
tions of X and Y and p,(x) is the probability density 
function of X conditioned on Y: 

Applying Equation 29 to Equation 27 leads to 

where is the probability density of the noise 
conditional on a,@,), the mean activity of pool i for 
disparity 6,. 

The term inside the parentheses in Equation 30 is 
the conditional variance of the noise, which we know 
is proportional to the mean activity (Eq. 11): 

K 
n;~~,,,,(n,) dni = -a,(6,); (31) 

N, 

therefore, 

Equation 24 provides a one-shot method for com- 
puting the optimal set of weights and can be easily 
implemented in standard symbolic mathematics pro- 
grams such as MATHEMATICA, the one we used here. 
However, this method is impractical when the matri- 
ces have more than 100 dimensions. Matrix inversion 
was not used, for example, in the optimization prob- 
lem posed in the first section of this appendix because 
the size of the matrix C, was 410 x 410. 
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